.. Example project, yo documentation master file, created by sphinx-quickstart on Tue Jan 31 18:33:14 2017. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. .. _sect-theory_bs: Basic sums and the effective conductivity of composites ======================================================= Consider the effective conductivity of polydispersed fiber inclusions of conductivity :math:`\lambda_f` of different sizes randomly embedded in a matrix of conductivity \ :math:`1` (see :ref:`Fig. 1 `). .. _fib-figure: .. figure:: fibCompPoly.png :alt: There is no picture! :width: 60% Fig. 1 Model of a polydispersed fibrous composite. .. _ref-cell_periods: A cross–section of such composite is considered to be the periodic two–dimensional lattice :math:`\mathcal{Q}`, defined by complex numbers :math:`\omega_{1}` and :math:`\omega _{2}` on the complex plane :math:`\mathbb{C}`. The :math:`(0,0)`-cell is introduced as the parallelogram :math:`Q_{(0,0)}:=\{z=t_{1}\omega_{1}+t_{2}\omega_{2}:-1/2`). .. _cell-figure: .. figure:: cell2.svg :alt: There is no picture! :width: 60% Fig. 2 Polydispersed two--dimensional composite modelled as a two-periodic cell :math:`Q_{(0,0)}`. The lattice :math:`\mathcal{Q}` consists of the cells :math:`Q_{(m_{1},m_{2})}:=\{z\in \mathbb{C}:z-m_{1}\omega_{1}-m_{2}\omega _{2}\in Q_{(0,0)}\}`, where :math:`m_{1}` and :math:`m_{2}` run over integer numbers. Inclusions are modelled by :math:`N` non-overlapping disks of different radii :math:`r_j` (:math:`j=1,2,3,\ldots,N`). Thus, the total concentration of inclusions equals .. math:: \nu=\pi\sum_{j=1}^N r_j^2. Let :math:`r=\displaystyle\max_{1 \leq j \leq N}r_j` and introduce the constants .. math:: :label: nuk_const \label{eq:nuConst} % \nu_j =\frac{r_j^2}{r^2}, \quad j=1,2,3,\ldots,N, \nu_j =\left(\frac{r_j}{r}\right)^2, \quad j=1,2,3,\ldots,N describing polydispersity of inclusions. V.Mityushev [#BM2001]_ obtained the closed form representation of the effective conductivity (see also [#GMN2018]_) .. math:: :label: lambda \label{eq:eff1} \lambda=1 +2\rho \nu \sum_{q=0}^{\infty }B _{q}\nu^{q}, where .. math:: \label{eq:rho} \rho=\frac{\lambda_f-1}{\lambda_f+1} is the Bergman’s contrast parameter  and the constants :math:`B_q` are given by the following theorem, as linear combinations of *basic sums* (defined later in this section). .. _theorem_Bq: **Theorem** [#Naw2016]_ The algorithm for generating the symbolic representations of the coefficients :math:`B_q` takes the form of a recurrence relation of the first order: .. math:: :label: coeff_Bq \label{eq:2.18} \begin{array}{lll} B_0=1&\\ B_1=\pi^{-1}\rho e_{2}, & \\ B_2=\pi^{-2}\rho^2 e_{2,2}, & \\ B_q=\pi^{-1}\beta B_{q-1}, & q=3,4,5..., \end{array} where :math:`\beta` is the *substitution operator* modifying every basic sum in :math:`B_{q-1}` according the transformation rule: .. math:: :label: tr_rule \label{mainRule} e_{p_1,p_2,\ldots,p_n}\longmapsto\rho e_{2,p_1,p_2,\ldots,p_n}-\frac{p_2}{p_1-1}e_{p_1+1,p_2+1,p_3,\ldots,p_n}. Consider a set of points :math:`a_k` :math:`(k= 1, 2,3,\ldots, N)` in the cell :math:`Q_{(0,0)}`. Let :math:`n` be a natural number; :math:`k_0, k_1\ldots, k_n` be integers from 1 to :math:`N`; :math:`k_j\geq 2`. Let :math:`\mathbf{C}` be the operator of complex conjugation. The following sums, encountered in :eq:`coeff_Bq`  and :eq:`tr_rule`, were introduced by V.Mityushev: .. math:: :label: eSum %\label{eq:eSum} \begin{array}{c} e^{\nu_0,\nu_1,\nu_2,\ldots,\nu_n}_{p_1,p_2,p_3,\ldots,p_n}= \displaystyle{\frac{1}{\eta^{\delta+1}} {\sum_{k_0,k_1,\ldots,k_n}}} \nu^{t_0}_{k_0}\nu^{t_1}_{k_1}\nu^{t_2}_{k_2}\cdots\nu^{t_n}_{k_n} E_{p_1}(a_{k_0}-a_{k_1})\overline{E_{p_2}(a_{k_1}-a_{k_2})}\\ \times E_{p_3}(a_{k_2}-a_{k_3})\cdots \mathbf{C}^{n+1} E_{p_n}(a_{k_{n-1}}-a_{k_n}), \end{array} where :math:`\eta=\sum_{j=1}^N\nu_j` and :math:`\delta ={\frac{1}{2}\sum^n_{j=1}p_j}`. Functions :math:`E_k` (:math:`k=2,3\ldots`) are Eisenstein functions corresponding to the two-periodic cell \ :math:`Q_{(0,0)}` (see :ref:`section on Eisenstein functions `), and the superscripts :math:`t_j` :math:`(j=0,1,2\ldots,n)` are given by the recurrence relations .. math:: \label{eq:ep2nuk} \begin{array}{ll} t_0=1, \\ t_j=p_j-t_{j-1},\quad & j=1,2,3,\dots,n. \end{array} The sum :eq:`eSum`  is called the *basic sum of the multi-order* :math:`{\mathbf p}=(p_{1},\ldots,p_{n})`. Hereafter, the superscripts for basic sum are omitted for the purpose of conciseness. In addition, following  we have :math:`t_n=1`. From the above definitions we see that every coefficient :math:`B_q` (:math:`q=1,2,3, \ldots`) forms the linear combination of basic sums. All basic sums included in the coefficient :math:`B_q` are called *basic sums of order* :math:`q`. In case of the composite modelled by :math:`N` identical disks, where :math:`\nu_j=1` (:math:`j=1,2,3,\ldots,N`), basic sums :math:`e_2` and :math:`e_{2,2}` take the following forms: .. math:: \begin{array}{lll} e_{2}&= & \displaystyle{\frac{1}{N^2}} \displaystyle{\sum_{k_0=1}^{N}}\;\displaystyle{\sum_{k_1=1}^{N}}E_{2}(a_{k_0}-a_{k_1}),\\ e_{2,2}&= & \displaystyle{\frac{1}{N^3}} \displaystyle{\sum_{k_0=1}^{N}}\;\displaystyle{\sum_{k_1=1}^{N}}\;\displaystyle{\sum_{k_2=1}^{N}}E_{2}(a_{k_0}-a_{k_1})\overline{E_{2}(a_{k_1}-a_{k_2})}. \end{array} .. rubric:: References .. [#Naw2016] W. Nawalaniec, *Algorithms for computing symbolic representations of basic e–sums and their application to composites*, Journal of Symbolic Computation, Vol. 74, 328345,2016. .. [#BM2001] L. Berlyand, V. Mityushev, *Generalized Clausius–Mossotti formula for random composite with circular fibers*. J. Stat. Phys. 102 (1/2), 115–145, 2001 .. [#GMN2018] S. Gluzman, V. Mityushev, W. Nawalaniec, *Computational Analysis of Structured Media*. Academic Press (Elsevier), 2018