Appendix. Weierstrass \(\wp\) function and lattice sums¶
Note
This section is under constant development. Its content will change and improve over time.
import numpy as np
from basicsums.weierstrass import Weierstrass
from basicsums.eisenstein import E_numeric
w1 = 1
w2 = 1j
wp = Weierstrass(w1/2, w2/2)
wp.wp(0.1+0.1j) # Weierstrass P function
(-4.440892098500626e-15-49.81116546459035j)
wp.wpp(0.1+0.1j) # derivative of th Weierstrass P function
(501.88358442957417+501.8835844295741j)
Eisenstein functions and Eisenstein-Rayleigh lattice sums¶
from basicsums.eisenstein import lattice_sums
S = lattice_sums(w1, w2, 6)
S[2]
3.1415926535897927
from basicsums.eisenstein import E
E(3), E(4)
(-P'(z)/2, P(z)**2 - 5*S(4))
E(10)
(8*P(z)**5 - 76*P(z)**3*S(4) + 5*P(z)**2*P'(z)**2 + 180*P(z)*S(4)**2 - 11*P'(z)**2*S(4))/28
from basicsums.eisenstein import E_numeric
E2 = E_numeric(2, w1, w2)
E2(0.1 + 0.5j)
(-2.8498259468658538-6.84841378126949e-16j)
E3 = E_numeric(3, w1, w2)
E3(0.1 + 0.5j)
(-8.25402443117664+3.1086244689504383e-15j)
E4 = E_numeric(4, w1, w2)
E4(0.1 + 0.5j)
(20.14103683511636+8.206342742542959e-15j)